

1

Cache information and management

By Thomas SCHLUMBERGER, Technical Support Engineer, 4D France.

Technical Note 25-02

2

Table of Contents

Table of Contents .. 2
Abstract .. 3
Introduction ... 3
Requirements ... 3
A brief history of the Cache settings in 4D ... 3
Cache Storage vs. Memory Storage .. 10

What is moved to and stored in the Cache? .. 10
What is NOT stored in the Cache, but stored in memory? .. 10

How Does 4D Manage the Cache? .. 11
The organized content of the cache is not exposed: .. 11
What can be retained: .. 11
Key considerations: ... 12

The settings files including the Cache for deployment .. 13
Visualizing the cache values through the interface ... 14
Retrieving Cache values through 4D commands .. 16

Via the use of GET MEMORY STATISTICS .. 16
Via the command Get database measures (created in 4D v14.3) 17

Elementary properties .. 18
Via the command Cache info (created in 4D v16) .. 18
Via the command Priority in Cache (Set and Get) .. 19
DataStoreClass information ... 20

Monitoring the cache via 4D_info_report ... 20
Other Cache Types: ORDA cache ... 21

ORDA cache .. 21
Conclusion .. 22

3

Abstract

The cache in 4D is a buffer that stores created, modified, or frequently queried data. It operates
as a reserved part of the 4D Engine, but to optimize its performance, certain settings and
commands are available to interact with the cache. Cache performance is influenced not only
by the server configuration but also by the design of the database.

Introduction

After providing a brief history of the evolution of cache settings in 4D and explaining how cache
handling is managed by the 4D Engine, optimized regardless of whether its size is fixed or
calculated, the Technical Note focuses on possible interactions to improve cache performance.
Certain settings change can be applied to adjust the cache’s size and flush frequency, and
commands are available to interact with its content.
The Technical Note explains what the cache is, how it has evolved, and what tools are
available to interact with it.

Requirements

The following versions of 4D/4D Server are required for the Technical Note:
• 4D 20.5 LTS or later version (20 R5, 20 R6, 20 R7, etc….)

A brief history of the Cache settings in 4D

Cache has always existed in 4D, as it is the optimal intermediate way to access structure and
data from the files. Until recently, connected hard disk(s) were slow compared to SSD, and
with small capacity. 4D was directly managing memory space for the cache set for the
database.
In version 6.0, the Cache settings were very limited, mainly the Maximum Cache:
Cache has always existed in 4D, as it provides the optimal intermediate way to access
structure and data from the files. Not too long ago, connected hard disks were much slower
compared to SSDs and had smaller capacities. In earlier versions, 4D directly managed the
memory space for the cache set for the database.

4

In version 6.0, the cache settings were very limited, mainly to the Maximum Cache size:

In version 2003, the Flush Data frequency setting was introduced as new feature:

In versions 5.x, 6.0, 6.x, and up to 2004, 4D Customizer could be used to set basic settings for
the Cache (Database Properties) of a structure file. In the following example, using the 4D 2003
version on Mac OS X:

5

The list of 4D Customizer properties:

For the monitoring of the Cache of 4D Server, the display of information was limited. For
example, with 4D 2003, no historical graphics were available:

6

Via the Runtime Explorer, cache statistics values are visible:

Starting with version 11, the new Administration window is significantly enhanced, with,
for example, a graph on top showing Cache usage (The current Cache size is 100.00
MB):

7

Note: The interval in the graph grows from 15 minutes to 4 hours, depending on how long the database

has been running.

8

Before 4D/4D Server v16 (64-bit)
The Cache management was using blocks of free memory space.
When a room was required, a quarter of the Cache was flushed, as shown below. Notice that
the Max Free block found was equal to a quarter of the Cache size before the fragmentation
and then was reduced to a low value after the first flush.

Note: In this historical graph from a Load testing done with 4D Server 13.2 HF1 (64-bit) via

4D_Info_Report, notice the regular flushing of the Cache by one quarter (dark green polygon
versus light green line) and the related reduction of the Max free block.

9

Starting with 4D Server v16
A Cache size change (and a flush Frequency change) can be applied without restarting the
Server, either via the SET CACHE SIZE command or, more easily, through the interface.
The change is applied through the Structure Settings/Database/(Memory) tab:

If the Calculation of adaptative cache is unchecked, an “Apply” button is displayed to validate
the change in the Cache size value.

10

Cache Storage vs. Memory Storage

What is moved to and stored in the Cache?

The list of the elements below represents what is stored in the cache:
• Structural definitions of tables, fields, relations, indexes, etc.
• General information about the open database (file paths, properties, etc.)
• Data file allocation bit tables
• Address tables for records, indexes, blobs, extra properties, etc.
• Index pages
• Records
• BLOBs (may be allocated in main memory instead if not enough space in Cache)
• Extra properties
• Sequence numbers
• Transactions
• Selections
• Sets
• Temporary buffers for sorting, read ahead, buffered disk write, etc.
• Structure objects (methods, forms, etc.)

4D constantly manages memory, juggling different kinds of objects to keep internal access
as efficient as possible.

What is NOT stored in the Cache, but stored in memory?

• The 4D Web Server Cache if activated (Settings/Web/Options(I)):

• All kinds of Storage content
• All activated Logs
• All activated operating system cache, such as opened files

11

How Does 4D Manage the Cache?

The question can be answered as follows: “It is a complex, private, and secured topic for 4D,
the result of many years of improvement and adaptation…”.
For any user, with the secured credentials to login, consider the many layers to access to the
cache: only the Settings of the Cache, and some Commands are available to users.

The organized content of the cache is not exposed:

• For obvious reasons of confidentiality regarding sensitive information.
• For future changes and optimizations.

What can be retained:

At startup, even if no data was queried or created, the cache is loading certain elements for
later data access (and structure/code access).
4D/4D Server will adapt to the current size of the cache and the available free memory, but
it is up to the designer or administrator to verify that the current size is suitable for the
database's usage.
By default, in a new project, the following settings are applied (adapted for Design mode):

• Calculation of adaptive cache is checked

12

Be aware that the Maximum Size is set to 400 MB, despite the 50 % percentage of available
memory used for the cache, even with a large amount of Ram available.
Don’t forget to enlarge this Maximum Size value when the data files are growing, or the
database is deployed.
Note that the maximum size is set to 400 MB, despite 50% of the available memory being used
for the cache, even when a significant amount of RAM is available.
Remember to increase this maximum size value as the data files grow or when the database is
deployed.
If 4D needs to create some space in the Cache for new objects, it must first purge.

Key considerations:

• ‘ACID’ compliance of 4D: ACID (atomicity, consistency, isolation, durability) refers to a
set of properties for database transactions, designed to ensure data validity despite
errors, power failures, and other mishaps. In databases, a sequence of operations
meeting the ACID properties — often perceived as a single logical operation on the data
— is referred to as a transaction. Transactions are often composed of multiple
statements. Atomicity guarantees that each transaction is treated as a single "unit",
which either succeeds completely or fails completely: if any of the statements
constituting a transaction fails to complete, the entire transaction fails, and the
database is left unchanged. An atomic system must guarantee atomicity in each
situation, including power failures, errors, and crashes.

• ‘CRUD’: Create, Read, Update, and Delete: As data grows and ages, the frequency of
Create, Update, and Delete operations will decrease relative to Read operations. To
simulate cache usage during deployment, it is important to consider the evolution of
CRUD operations when creating a large dataset for load testing, as this better reflects
the general usage patterns of a large database.

13

The Cache functions like a dynamic resource: if the server is not restarted, it will
continuously store the most frequently accessed content for connected users and be more
responsive to the most frequent requests.

The settings files including the Cache for deployment

When some Cache Settings are applied for a Database (Structure Settings /
Database/Memory), the settings are applied locally by default, and are set for the computer,
adapted first for design testing and local load testing.
If the database must be deployed with separate settings for different existing data files, one
setting in the preference must be checked (Settings/Security/User Settings):

If the “User Settings” is checked, when restarting the database, this new popup is displayed
for the settings:

If a change is applied in the Settings for User Settings or User Settings for Data file, a new json
file “settings.4DSettings” is added or updated in a “Settings” folder:
For example, changing some settings for the Cache:

<?xml version="1.0" encoding="UTF-8"?><preferences stamp="2">
 <com.4d>
 <database>
 <cache flush_buffer_delay="20s" size_maximum="4000"/>
 </database>
 </com.4d>
</preferences>

14

• User Settings: File located in the Database folder (inside the “Settings” folder)
• User Settings for Data file: File next to Data file (inside the “Settings” folder)

For more information on configuring cache settings, refer to the documentation:
https://developer.4d.com/docs/20/Desktop/user-settings

Visualizing the cache values through the interface

The run time explorer and the administration windows are available if the 4D/4D Server is not
run as service or executed in headless mode (introduced in 4D 18:
https://blog.4d.com/headless-4d-applications/).
Cache information can be viewed via several 4D server windows:

• Via the Runtime Explorer (when available), in “Information”:

Note: In ‘Information’ are exposed the values of the GET MEMORY STATISTICS command

• Via the interface of the Administration window, the Cache usage history is visible.
For more information, refer to the documentation:
https://developer.4d.com/docs/20/ServerWindow/monitor

15

Note: A hidden popup window available via a right-click in the lower left corner of the Administration

window let the user change the frequency of the refresh (Frequently is set by default)

The recommendation to avoid a rather useless CPU load of the 4D Server is to close the
Administration window if the observation of the current values is not needed: if the window
is opened again, selecting the Monitor/Cache will display the updated historical Cache
usage again (or at least reduce the Server updates frequency via the popup).
Reminder: When 4D Server is quitted, it reminds if the “Administration window” was closed
or not, the window will open again or not by default next time the server is started.
• Opening Administration window from Remote Machines
Via a 4D Remote, in Design mode, click on the “Administration” icon to open the server
administration window:

If (Application type=4D Remote mode) // display via the language
 // Do not provide this access to unauthorized remove users!
 OPEN ADMINISTRATION WINDOW
End if

16

Note: To open a server administration window from a remote machine, the user must be connected to

the remote database as a Designer or Administrator. Otherwise, attempting to open the
administration window generates a privilege error (-9991).

Even if the Server has been started as a Service, or in headless mode, the Administration
window is available to authorized remote users.
Note: When the Administration window is displayed on 4D Remote, the Cache information does not

replicate the graphic historical information available on 4D Server

Retrieving Cache values through 4D commands

Via the use of GET MEMORY STATISTICS

GET MEMORY STATISTICS (renamed from GET CACHE STATISTICS in 4D v13,
renamed MEMORY STATISTICS starting with 20 R7).

This command provides information about the memory usage and the Cache usage of
4D/4D Server. The real values
GET MEMORY STATISTICS (info type ; arrNames ; arrValues ; arrCount)

infoType Longint input addition of constants to specify the
type of info desired

arrNames Text array output name of the kind of value

arrValues Real array output info values

arrCount Real array output count of objects for the info
considered (when available)

The infoType parameter is 1 (only supported value on recent versions of 4D)

1 – General memory info such as that displayed in the Runtime Explorer (physical,
virtual, free, and used memory space, etc.)

Example of getting the available info:

GET MEMORY STATISTICS(1 ; arrNames ; arrValues ; arrCount) // MEMORY
STATISTICS 20R7

This will return the total size of the Cache, the used size of the Cache, the number of blocks
in the Cache, etc.:

17

Value in array names Description of the array values

cacheSize Maximum Cache size for the database. Note this is
the actual Cache that was allocated and might not match
the value you set in the settings.

usedCacheSize Amount of currently used Cache.

Physical Memory Size Total RAM on the machine.

Free Memory Free RAM on the machine (as reported by the OS).

Used physical memory Amount of RAM used by 4D (reported as Working Set
on Windows, Real Memory on Mac OS X)

Used virtual memory (The returned value might look huge starting with 4D
19R5, as much more virtual memory is reserved)

Stack memory Total of the stack size of all process

Free stack memory (can have the same total value as Stack memory)

Via the command Get database measures (created in 4D v14.3)

The Get database measures command returns detailed information about 4D database
engine events. The information includes data read/write access from/to the disk or the
memory cache, as well as the use of database indexes, queries and sorts.
Get database measures returns a single object containing all the relevant measures.
The options object parameter allows to set options for the returned information.
Overview of the returned object: The returned object contains a single property named
"DB" that has the following basic structure:

{
 "DB": {
 "diskReadBytes": {…},
 "cacheReadBytes": {…},
 "cacheMissBytes": {…},
 "diskWriteBytes": {…},

 "diskReadCount": {…},
 "cacheReadCount": {…},
 "cacheMissCount": {…},

18

 "diskWriteCount": {…},

 "dataSegment1": {…},
 "indexSegment": {…},

 "tables": {…},
 "indexes": {…}

 }
}

Elementary properties

Elementary properties can be found at different levels in the DB object. The properties
return the same information but at different scopes. Below a description of the
elementary properties:

Name Information returned
diskReadBytes Bytes read from disk
cacheReadBytes Bytes read from cache
cacheMissBytes Bytes missed from cache
diskWriteBytes Bytes written to disk
diskReadCount Read accesses from disk
cacheReadCount Read accesses from cache
cacheMissCount Read accesses missed from cache
diskWriteCount Write accesses to disk

Via the command Cache info (created in 4D v16)

The Cache info command returns an object that contains detailed information about the
current cache contents (used memory, loaded tables and indexes, etc.)
Note: This command only works in local mode (4D Server and 4D); it must not be used from 4D
in remote mode.

By default, returned information refers to the running database only. The
optional dbFilter object parameter allows to specify the command scope:

• Pass the "dbFilter" attribute with the "All" value to get cache information about all
running databases, including components.

• Pass the "dbFilter" attribute with a "" (empty string) value to get information about
the current database only (equivalent to omitting the dbFilter parameter).

The Cache info command returns a single object containing all the relevant information
about the cache. The returned object has the following basic structure:

{
 "maxMem": Maximum cache size (real),

19

 "usedMem": Current cache size (real),
 "objects": [...] Array of objects currently loaded in cache
}

$info: Returns information about the entity sets currently stored in 4D Server's cache as
well as user sessions. Check the Rest documentation:
https://developer.4d.com/docs/20/REST/info

Description
If the request is called in a project, information in the following properties is retrieved:

Property Type Description

cacheSize Number 4D Server's cache size.

usedCache Number How much of 4D Server's cache has been used.

Note: The returned object can be quite huge if many process are running on the 4D Server. Better use
this command for tuning or support reasons.

Via the command Priority in Cache (Set and Get)

The list of available commands is reminded, but unless for fine tuning after test, there is no
obvious reason to use them, as the Cache will automatically adjust the content for the most
demanded content. For more details, check the Documentation:
https://developer.4d.com/docs/category/cache-management

20

DataStoreClass information

A Datastore is the interface object provided by ORDA to reference and access a database.
Datastore objects are returned by the following commands documentation:
https://developer.4d.com/docs/20/API/DataStoreClass#flushandlock:

ds: a shortcut to the main datastore
Open datastore: to open any remote datastore
Function.flushAndLock(): The .flushAndLock() function flushes the cache of the local
datastore and prevents other processes from performing write operations on the
database. The datastore is set to a consistent, frozen state. Calling this function is
necessary before executing an application snapshot, for example.

Monitoring the cache via 4D_info_report

The 4D_Info_Report component has been updated for years and is maintained. It is compatible
with the latest current and future versions of 4D. The component creates human readable text
reports as a snapshot (single report) of the state of the Server, or a series of reports via a
stored procedure for historical and evolution analysis.

• Advantage of using this component: even if the Server is running as Service or in
headless mode, the remote (Administrator) user can check in real time the evolution of
the running database and later adjust for example the cache settings based on the
displayed polygons or illustrate a memory leak.

An archive of the Folder_reports (default name of the folder where the created reports are
stored) can be provided to another staff or a technical support member for analysis.
A single report (human readable) provides much information about the context of execution of
4D or 4D Server.
The component is available via Github: https://github.com/4d/4D_Info_Report/releases/latest/.
(An archive of components for older versions of 4D are available via the GitHub link).
A basic graphic interface is embedded in the component, allowing the view of the evolution of
some values logged on the Server via the stored reports, and some Information/Attention
content. for example, on the remote application, when the Server is running, and component is
implemented.

21

The two represented values about the Cache are:

• The light green polygon (flat unless a change is applied to the Cache size)
• The dark green polygon representing the filling level of the Cache.

Both green polygons are scaled (like other values about memory) on the right scale, expressed
in MB or GB.
Note: For an in-depth understanding of the component, please check this Technote: 4D_Info_Report

Tips and Support Cases (February 2024):https://kb.4d.com/assetid=79390

Other Cache Types: ORDA cache

4D remote applications using ORDA to access the main datastore with the ds command. Note
that the 4D remote application can still access the database in classic mode. The accesses are
handled by the 4D application server.
Other 4D applications (4D remote, 4D Server) opening a session on the remote datastore
through the Open datastore command. The accesses are handled by the HTTP REST server.
Documentation: https://developer.4d.com/docs/20/ORDA/datastores/
A limited remote Cache (on the remote computer) has been introduced when using ORDA:
Documentation: https://developer.4d.com/docs/20/ORDA/datastores#orda-cache

ORDA cache

22

For optimization reasons, data requested from the server via ORDA is loaded in the ORDA
remote cache (which is different from the 4D cache). The ORDA cache is organized by
dataclass, and expires after 30 seconds.
The data contained in the cache is considered as expired when the timeout is reached. Any
access to expired data will send a request to the server. Expired data remains in the cache
until space is needed.
By default, the ORDA cache is transparently handled by 4D. However, the contents can be
controled using the following ORDA class functions:

• dataClass.setRemoteCacheSettings()
• dataClass.getRemoteCache()
• dataClass.clearRemoteCache()

Conclusion

The 4D Cache is an important part of 4D Server performance. Except other parameters that
impact the Cache usage performance, like hardware configuration (available memory on the
computer, storage kind, network access, Database design) This Technical Note is an update of
the possible interactions with the Cache settings and observations, and what has changed
about the Cache management up to the recent versions of 4D.

